	Reading Tir	ne : An initial 2 minutes	to view BOTH sec	tions			
MATHEMATICS METHODS : UNITS 3 & 4, 2023 Test 2 – Integrals, FTC and Exponential Functions (10%)							
3.2.4, 3.2.6 - 3.2.22, 3.1.1 - 3.1.4, 3.1.9(exponentials only) Time Allowed First Name Surname							
25 minute	S				26 marks		
Circle your Teacher's Name:		Mrs Alvaro	Ms Chua	Mrs Fraser-Jo	Mrs Fraser-Jones		
		Mrs Greenaway	Mr Luzuk	Mrs Murray			
		Ms Narendranathan	Mr Tanday				
Assessment C	Conditions: (N.I	B. Sufficient working ou	It must be shown	n to gain full marks)			
 Calculators Formula St 	not Allow neet: Provided	veu 1					
 Notes: 	Not Alloy	wed					
		PART A – CALCUL	ATOR FREE				
Differentiate the a) $y = 2e^{x^2 + x}$ y' = 2(2x + x) or y' = (4x + x) b) $\int_{-2}^{x} \frac{e^t}{t^3} dt$ $\frac{d}{dx} \left(\int_{-2}^{x} \frac{e^t}{t^3} dt \right)$ c) $f(x) = \frac{e^{3x^4}}{2x^2}$ $f'(x) = \frac{(2x^2)^2}{2x^2}$	e following, giving $(-1)e^{x^{2}+x}$ $(+)e^{x^{2}+x}$	g your answer in simple ✓ correctly different ✓ applies FTC to ^{3x⁴})(4x) ✓ attempts to ✓ correctly to ✓ fully simp	est form: ntiates o obtain correct a to use quotient ru uses quotient rul lifies	nswer ule			
$=\frac{4x}{e^3}$	$ \frac{4x^4}{e^{3x^4}(6x^4-1)} \\ \frac{4x^4}{x^4(6x^4-1)} \\ \frac{x^3}{x^3} $						

Determine the following:

-1 overall if no 'c' in Q2 a & c

(2, 2, 3 - 7 marks)

a) $\int 12x^3 e^{x^4+5} dx$ √ 3 $= 3 \int 4x^3 e^{x^4+5} dx$ ✓ correctly integrates exponential $=3e^{x^4+5}+c$ $\int_{1}^{0} \frac{d}{dx} \left[4\pi x \cdot e^{3x} \right] dx$ $-\int_0^1 \frac{d}{dx} [4\pi x \cdot e^{3x}] dx = -4\pi e^3$ ✓ Reverses bounds and makes negative ✓ correctly answer $\begin{array}{l} \text{or} \\ = [4\pi x \cdot e^{3x}]_1^0 \end{array}$ ✓ Substitutes correctly $= 0 - 4\pi e^3$ ✓ correctly answer $=-4\pi e^3$ b) $\int 3x(x^2-1)^4 dx$ $= \frac{3}{10} \int 10x(x^2 - 1)^4 dx \quad \checkmark \text{ valid method to find } 10x(x^2 - 1)^4$ $= \boxed{\frac{3(x^2 - 1)^5}{10} + c} \quad \checkmark \text{ correctly integrates}$ $= \frac{3}{2} \int 2x(x^2 - 1)^4 dx$ = $\frac{3}{10} \times \frac{(x^2 - 1)^5}{5}$ = $\frac{3(x^2 - 1)^5}{10} + c$ $\frac{d}{dx}(x^2 - 1)^5 = 5 \times 2x(x^2 - 1)^4$ $= 10x(x^2 - 1)^4$

QUESTION 3

(1, 1, 2, 2 - 6 marks)

The graph of y = f(x) is shown below. The area of the shaded region A is 12 square units and of region B is 24 square units.

Evaluate the following.

- a) $\int_{0}^{1} 2 f(x) dx$ = $2 \int_{0}^{1} f(x) dx$ = 24
- b) $\int_0^3 f(x) dx = 12 24$ = -12

c)
$$\int_0^1 [1+f(x)] dx = \int_0^1 1 dx + \int_0^1 f(x) dx$$

= 1 + 12
= 13

d)
$$\int_{1}^{3} f'(x) dx = f(3) - f(1)$$

= 0 - 0
= 0

- ✓ expresses integral as sum of $\int_0^1 1 \, dx$ and $\int_0^1 f(x) \, dx$ must be shown for full marks ✓ evaluates integral correctly
- applies fundamental theorem of calculus must be shown for full marks
- ✓ evaluates correctly

(3 marks)

Consider the function f(x) shown graphed below. The table gives the value of the function at the given x values.

By considering the areas of the rectangles shown, demonstrate and explain why $29.5 < \int_{0}^{1.5} f(x) dx < 34.$

Lower limit = $18 \times 0.5 + 19 \times 0.5 + 22 \times 0.5 = 9 + 9.5 + 11 = 29.5$ Upper limit = $19 \times 0.5 + 22 \times 0.5 + 27 \times 0.5 = 9.5 + 11 + 13.5 = 34$

OR

Inscribed (underestimate) rectangles = $0.5(18 + 19 + 22) = \frac{59}{2} = 29.5$ Circumscribed (overestimate) rectangles = $0.5(19 + 22 + 27) = \frac{68}{2} = 34$

 \checkmark shows a calculation to produce an underestimate of area

 \checkmark shows a calculation to produce an overestimate of area

∴ $\int_0^{1.5} f(x) dx$ is the area enclosed by curve and *x*-axis between x = 0 and x = 1.5, thus must lie between the rectangle areas. Hence, $29.5 < \int_0^{1.5} f(x) dx < 34$, as required.

✓ explains the limits in terms of area

(5 marks)

The origin, *O*, and the points *P* and *Q* are the vertices of the curved 'triangle' which is shaded in the diagram. The sides lie on curves with equations y = x(x+3), $y = x - \frac{x^2}{4}$ and $y = \frac{4}{x^2}$. Calculate the area of the shaded region.

$$A = \int_{0}^{1} x(x+3) - \left(x - \frac{x^{2}}{4}\right) dx + \int_{1}^{2} \frac{4}{x^{2}} - \left(x - \frac{x^{2}}{4}\right) dx$$

$$= \int_{0}^{1} \left(x^{2} + 3x - x + \frac{x^{2}}{4}\right) dx + \int_{1}^{2} \left(4x^{-2} - x + \frac{x^{2}}{4}\right) dx$$

$$= \int_{0}^{1} \left(\frac{5x^{2}}{4} + 2x\right) dx + \left[-4x^{-1} - \frac{x^{2}}{2} + \frac{x^{3}}{12}\right]_{1}^{2}$$

$$= \left[\frac{5x^{3}}{12} + x^{2}\right]_{0}^{1} + \left(-2 - 2 + \frac{8}{12}\right) - \left(-4 - \frac{1}{2} + \frac{1}{12}\right)$$

$$= \frac{5}{12} + 1 - 4 + \frac{8}{12} + 4 + \frac{1}{2} - \frac{1}{12}$$

$$= 2\frac{1}{2} units^{2}$$

✓ correctly sets up first integral

- ✓ correctly sets up second integral
- ✓ correctly integrates and substitutes into first integral
- ✓ correctly integrates and substitutes into integral
- ✓ correct area

Allow F/T

Units question

Reading Time: An initial 2 minutes to view BOTH sections

MATHEMATICS METHODS : UNITS 3 & 4, 2023 Test 2 – Integrals, FTC and Exponential Functions (10%) 3.2.4, 3.2.6 – 3.2.22, 3.1.1 – 3.1.4, 3.1.9(exponentials only)									
Tim	e Allowed 20 minutes	First Name	Surname			Marks 19 marks			
Circle your Teacher's Name:		Mrs Alvaro Mrs Greenaway	Ms Chua Mr Luzuk	Mrs Fraser-Jo Mrs Murray	nes				
			Ms Narendranathan	Mr Tanday	wite warray				
Assessment Conditions: (N.B. Sufficient working out must be shown to gain full marks)									
*	Calculators:	Not Allow	ved						
*	Formula She	et: Provided							
*	Notes:	Not Allow	ved						

PART B – CALCULATOR ASSUMED

QUESTION 6

(3, 2, 2: 7 marks) In January 1995 the purebred dingo population on Fraser Island was 300. The population, P, since then can be modelled by;

$$P = 80 + Ae^{kt}$$

where A and k are constants, and t is the number of years since January 1995.

- a) Show that $\frac{dP}{dt} = k(P 80)$ $P = 80 + Ae^{kt} \Rightarrow Ae^{kt} = P - 80$ $\frac{dP}{dt} = Ake^{kt}$ \checkmark Rearranges $P = 80 + Ae^{kt}$ $= k(Ae^{kt})$ \checkmark Differentiates P with respect to t = k(P - 80) \checkmark Substitutes *P* - 80 into equation
- Alt. Sol $\frac{d^{P}}{dt} = Ake^{kt} = k \times Ae^{kt} \checkmark$ $= k(80 + Ae^{kt} 80) \checkmark$ = k(P - 80)
- b) In January 2015 it was found that the purebred population had dropped to 162. Show that the purebred dingo population is decreasing at an annual rate of approximately 5% per year.
 - When t = 0t = 20, P = 162 $300 = 80 + Ae^0$ $162 = 80 + 220e^{20k}$ = 80 + Ak = -0.0493A = 220 $k \approx -0.05$
- \checkmark Finds A ✓ Substitutes into correct equation ✓ States approximate decrease

 \therefore the population is decreasing at a rate of approximately 5% per year.

- c) Assuming this pattern continues, what will the purebred dingo population be in January 2050?
 - When t = 55 $P = 80 + 220e^{55k}$ = 94.58 ≈ 95

- ✓ Correctly substitutes into equation
- ✓ States population: accept 94

.: In 2050 the population is predicted to be 95 purebred dingoes.

(2 marks)

An oil storage tank ruptures at a time t = 0 and oil leaks from the tank at a rate of $r(t) = -100e^{-0.01t}$ litres per minute. How much oil leaks out during the third hour?

 $\int_{120}^{100} -100e^{-0.01t} dt = -1358.95 L$

- ✓ Correct limits of integration
- ✓ Correct answer

: 1358.95 L leak out in the third hour.

QUESTION 8

(4 marks)

A product is sold such that the price per unit is given by $p = -3x^2 + 600x$ dollars when x units are sold. Find the marginal revenue at x = 300 units and interpret the result.

revenue function: $R(x) = p \cdot x = (-3x^2 + 600x) \cdot x = -3x^3 + 600x^2$

marginal revenue: $R'(x) = \frac{dR}{dx} = -9x^2 + 1200x$

marginal revenue at $x = 300 \implies R'(300) = \left. \frac{dR}{dx} \right|_{x=300} = -9(300)^2 + 1200(300) = -450\,000$

Interpretation: If production increases from 300 to 301 units, the revenue decreases by $450\,000$ dollars.

This means that at the point when 300 units have been sold, sell the next unit will approximately result in decrease in revenue by \$450 000.

- ✓ Finds revenue function
- ✓ Finds marginal revenue function
- \checkmark Finds marginal revenue at x = 300
- ✓ Correctly interprets result

QUESTION 9

(3 marks)

A particle starts from rest and moves in a straight line with an acceleration of $a(t) = t^2 + e^{t-1} - 5 m/s^2$. What is the total distance travelled in the 2nd second, to the nearest *m*?

$$v(t) = \frac{t^3}{3} + e^{t-1} - 5t - \frac{1}{e}$$
$$x(2) - x(1) = \int_1^2 \left| \frac{t^3}{3} + e^{t-1} - 5t - \frac{1}{e} \right| = 4.9 \ m \approx 5m$$

The distance travelled is 5 m during the 2nd second.

 \checkmark finds v(t)

- ✓ correct bounds
- ✓ finds distance to nearest m

Rounding Question

(3 marks)

The shaded region shown is enclosed by two parabolas, each with x-intercepts at x = -1 and x = 1. Given that the area of the shaded region is 8, find the value of k, where k > 0.

$$A = 2 \int_0^1 k(1 - x^2) - 2k(x^2 - 1)dx = 8$$

: $k = 2$

- ✓ Sets up integral with bounds 0 and 1
- ✓ Recognises needs to multiply integral by 2
- \checkmark correctly solves for *k*

Students cannot not use absolute value when trying to solve on ClassPad, max 1/3 if they try.